

CHEM 160 – Thermodynamics.

Laws:

- First Law: all of the energy is conserved.
- Second Law: the entropy in the universe is always increasing. $\Delta S_{surr} = \frac{-\Delta H}{T}$
- Third Law: there is an absolute lowest temperature. T = 0K = -273 °C = -460 °F

Formulas:

$$W = -P\Delta V = -\Delta nRT$$

$$W = Work (J)$$

 $P = Pressure (Pa)$

$$\Delta V$$
= Change in Volume (L)

$$\Delta n$$
 = Change in Moles of Gas (mol)

$$R = Gas Constant$$

$$(8.34 \text{ J/mol} \cdot \text{K}, \text{if}$$

$$T = 300 \text{ K}$$

$$T = Temperature (K)$$

$\Delta G = \Delta H - T\Delta S$

$$\Delta G$$
 = Change in Gibbs Free Energy (J/mol)

$$\Delta H$$
 = Change in Enthalpy

$$\Delta S$$
 = Change in Entropy

$$T = Temperature (K)$$

$\Delta H = mC\Delta T$

$$m = Mass of System (g)$$

$$C = Specific Heat (J/K)$$

$$\Delta T$$
 = Change in Temperature (K)

$$\Delta H = Change in Enthalpy$$
 (J/mol)

$$\Delta H = \Delta E + P\Delta V$$

$$\Delta E$$
 = System Energy (J)
 $P\Delta V$ = Expansion Work
 ΔH = Change in Enthalp

$$P\Delta V = Expansion Work$$

 $\Delta H = Change in Enthalpy$
(J/mol)

$$E_{mot} = \frac{1}{2} kT$$

$$E_{mot}$$
 = Motional Energy (J)
 k = Boltzmann Constant
(1.38 • 10-23 J/K)
 T = Temperature (K)

$$S = k \cdot ln (\#PO)$$

ΔH	ΔS	ΔG	Reaction Characteristics
+	+	+ at low T - at high T	Non-spontaneous at low T Spontaneous at high T
+	-	Always +	Non-spontaneous at all T and Reverse reaction is spontaneous
-	+	Always -	Spontaneous at all T
-	-	- at low T + at High T	Spontaneous at low T Non-spontaneous at high T

Energy Type	Symbol	Sign	Interpretation
Change in Enthalpy	ΔΗ	- +	Exothermic, Heat Released Endothermic, Heat Absorbed
Change in Entropy	ΔS	- +	System has more order System has less order
Change in Free Energy	ΔG	+	Spontaneous, Compound is unstable Non-Spontaneous, Compound is stable
Work	W	- +	Work done by the system Work done on the system

